Examination: 20052

International Marketing

Summer Semester 2011 Dr. John E. Brennan

You are allowed to use a non-programmable calculator (in accordance with the instructions given by the examination office) and a translating dictionary from your native language to English (without any notes written into it). <u>All</u> of the <u>seven</u> (7) examination questions must be answered. This examination consists of <u>three</u> (3) pages and must be completed within 60 minutes.

Question 1: <u>NOTE:</u> This problem MUST be solved using the table method presented in this lecture course. Other statistical methods for the solution of this problem will not be accepted.

A group of airline pilots undergo routine screening as part of a government mandated Drug Testing Program. The random variable Y=y, where y=1 indicates the pilot tested uses an illegal substance and y=0 the absence thereof. Within this group of pilots it is known that 0.2% of them are actual drug users. When the pilots are tested, only 92% of those who are actual drug users will test positive. The random variable X=x is the test result, x=1 indicates a positive test and x=0 a negative test result. The test is not perfect because only 96% of those pilots, who do not use any drugs at all, will receive a negative test result.

		X		
		1	0	$f_2(y)$
Y	1			
	0			
	f ₁ (x)			1.0

Condi	tional (Y	X=x
	7	(

		X	
		1	0
Y	1		
	0		
		1.0	1.0

Conditional (X | Y= y)

		X		
		1	0	
Y	1			1.0
	0			1.0

Bayesian Multiple Table

		X	
		1	0
Y	1		
	0		

- a. What is the probability that a pilot who tests positive is not a drug user?
- b. What is the probability that a pilot that has a negative test is actually a drug user?

Please turn to page 2

Question 2: Bayes' Theorem provides a logical framework for analyzing the human thought process and shows the usefulness of information in the assessment of future outcomes.

$$Pr(Y \mid X=x) = \delta Pr(Y)$$
, where $\delta = Pr(X \mid Y=y) / Pr(X)$.

- a. Using Question 1 as an example: What are the prior probabilities of Y?
- b. Explain in detail under what conditions the multiple δ is equal to one.

Question 3: Below is a joint probability distribution for the random pair (Y, X):

$\mathbf{y} \setminus \mathbf{x}$	1.5	3.5	5.5
0.4	0.045	0.080	0.045
0.6	0.120	0.120	0.120
0.8	0.085	0.300	0.085

- a. Compute E(Y).
- b. Compute E(Y | X= 1.5).
- c. Compute C(X, Y).
- d. Are X and Y stochastically independent?

Question 4: The two discrete random variables X = x and Y = y, have a known joint probability distribution, $(X, Y) \sim f(x, y)$, where $x = \{16, 17, 18\}$ and $y = \{0.5, 1.2, 3.7\}$.

- a. Explain how the univariate marginal distributions are derived.
- b. By normalizing the columns of the joint probability distribution the univariate conditional probability distributions of the random variables (Y|X=x) are derived. Are the conditional variances, V(Y|X=x), all equal to each other?

Question 5: When the range of a random variable, Y=y $\{y \ge a\}$ is restricted, we say that the random variable is truncated at point a.

- a. Consider a discrete random variable, Y = y, where $y = \{2, 4, 6, 8\}$, with associated discrete uniform probabilities $\{1/4, 1/4, 1/4, 1/4\}$. If this random variable is truncated at a = 4 (therefore, y > 4), what are the truncated probabilities that y = 2 and that y = 8?
- b. Compute the E(Y).
- c. Compute the E(Y|Y=y>4).

Question 6: Decision-makers make yes / no type decisions very often. This decision can be modeled as a dichotomous random variable, Y = y where $y = \{0, 1\}$. Furthermore, assume that this decision-maker has been provided with two highly relevant numerical sources of information, X = x and Z = z.

- a. Assume that $E(Y \mid X = x, Z = z) = \alpha + \beta x + \gamma z$: What are the shortcomings of this model specification, if any?
- b. The conditional random variable (Y | X= x, Z= z) has a Bernoulli distribution, therefore, the conditional expectation, E(Y | X= x, Z= z), provides what information?

Question 7: Consider a certain student is applying for admission at the O-v-G-Universität in Magdeburg (M=m, where m=1 is accepted and m=0 is rejected) and the Martin Luther Universität in Halle (H=h, where h=1 is accepted and h=0 is rejected). The student believes that there is a probability of 0.6 of being accepted in Halle and 0.2 of being accepted in Magdeburg. The probability of being rejected by both is 0.4.

	f ₁ (m)			
Con	nditional	(H)	M= m)	

		M	
		1	0
Н	1		
	0		
		1.0	1.0

Conditional (M | H= h)

100		M		
		1	0	
Н	1			1.0
	0			1.0

Bayesian Multiple Table

		M	
		1	0
H	1		
	0		

- a. What is the probability that this student will be accepted in Halle if that student has already been accepted in Magdeburg?
- b. Is the event "accepted in Magdeburg" independent from the event "accepted in Halle"? Explain your answer.

This is the End of the Examination GOOD LUCK!

	•
	·