Examination: 5027

Economics III

Introduction to Econometrics

Winter Semester 2008 / 2009

Dr. John E. Brennan

You are allowed to use a non-programmable calculator (in accordance with the instructions given by the examination office) and a translating dictionary from your native language to English (without any notes written into it). <u>All</u> of the <u>twelve</u> (12) examination questions must be answered. This examination consists of <u>four</u> (4) pages and must be completed within 120 minutes.

NOTE: Answers that are NOT presented in a NEAT and ORDERLY manner, easy to read, will NOT be graded. All calculations should be rounded to four places following the decimal point (e.g., 15.6429)

Question 1 (15 points)

There are n different sets, i=1,2,...,n, of the (k-1) explanatory variables, j=2,3,...,k. The i^{th} set would be written as: $(X_2=x_{i2},X_3=x_{i3},...,X_k=x_{ik})$. Consequently, the notation, $X_j=x_{ij}$, means that the (k-1) explanatory variables are observed with their i^{th} value. Consider the $(n \times n)$ covariance matrix of the n univariate conditional random variables, $(Y|X_j=x_{ij})$:

- a. Completely explain what we mean by the term "Hetroscedasticity" and what it tells us in a model where Y = Savings Rate and X = Family Income.
- Explain the conditions that are necessary for the covariances in this matrix to be exchanged for correlation coefficients.
- c. Completely define the First-Order Autoregressive Process, AR(1). With AR(1), What is the value of Corr $[(Y | X_i = x_{3i}), (Y | X_i = x_{8i})]$?

Question 2 (10 points)

Consider the discrete random variables (X, Y) with joint pmf: f(x, y) where X = x and Y = y.

- a. Explain in detail how the probabilities associated with the conditional random variables $(Y \mid X = x)$ relate to the joint probabilities, f(x, y).
- b. When are the probabilities associated with the conditional random variables $(Y \mid X=x)$ equal to the marginal probabilities of Y, $f_2(y)$.

Question 3 (10 points)

Consider the continuous univariate random variable X= x ~ Rectangular with a < b,

$$f(x) = 1 / (b - a)$$
 and $F(x) = (x - a) / (b - a)$ for $a \le x \le b$.

Calculate the following using a = 4 and b = 8.

- a. Pr $\{3.0 \le X = x \le 5.0\}$
- b. Pr $\{3.0 \le X = x \le 5.0 \mid X = x \le 6\}$

Question 4 (10 points)

Given the discrete bivariate joint probability distribution, $(X, Y) \sim f(x, y)$.

YX	1.5	3.5	5.5	f ₂ (y)
0.4	0.045	0.080	0.045	Tr.
0.6	0.120	0.120	0.120	
0.8	0.135	0.200	0.135	
f ₁ (x)				1.00

- Calculate C(X, Y). Is Y stochastically independent of X? Explain your answer in complete detail.
- Calculate E(Y) and E(Y | X= 3.5). Explain your answer in complete detail.

Question 5 (10 points)

You are writing a Master's thesis in the Department of Economics at the Martin-Luther-Universität Halle-Wittenberg. The relationship between private consumption and family income in eastern Germany is being studied. Annual data has been obtained from 1978 to

- 2007 (30 observations on consumption and income). Your study should take into account the change in structure that occurred as a result of German political reunification in 1989. Explain in detail a BLP estimation procedure that would allow the estimated "level" of
 - consumption to be different before and after the structural change. b. Explain in detail a BLP estimation procedure that would allow the estimated marginal
 - propensity to consume (mpc) to be different before and after the structural change.

Question 6 (10 points)

The Runs Test (Geary Test) is a nonparametric test that can be used to test for the presence of autocorrelation in a sample.

a. Explain the rationale behind the Runs (Geary) Test.

$$E(\delta) = \left[(2 n_1 n_2) / (n_1 + n_2) \right] + 1$$

$$V(\delta) = \frac{2 n_1 n_2 (2 n_1 n_2 - n_1 - n_2)}{(n_1 + n_2)^2 (n_1 + n_2 - 1)}$$

Can we accept the null hypothesis in this case? Explain your answer fully.

Question 7 (10 points)

Consider a random sample of 15 annual observations (yt, xt2, xt3). The following matrices were calculated:

det X'
$$X = 306223760$$
 Calculate estimates of the BLP = $E*(y \mid X) = \beta X$

$$\mathbf{X' X} = \begin{bmatrix} 15 & 31895 & 120 \\ 31895 & 68922513 & 272144 \\ 120 & 272144 & 1240 \end{bmatrix} \quad (\mathbf{X' X})^{-1} = \begin{bmatrix} 37.232772 & -0.0225081 & 1.3367066 \\ -0.0225081 & 0.0000137 & -0.0008319 \\ 1.3367066 & -0.0008319 & 0.054035 \end{bmatrix}$$

- Calculate the vector c.
- Calculate the Var-Cov matrix for the vector c. b.

Question 8 (10 points)

Given an annual time-series sample of the 34 observations on the random variables (Y, X, W) for t = 1972, 1973, ..., 2005, an estimate of the correlation coefficient, ρ , between the univariate conditional random variables (Y $| X_t = x_t, W_t = w_t$) and (Y $| X_{t-1} = x_{t-1}, W_{t-1} = w_{t-1}$)

can be obtained using the Durbin-Watson d statistic:
$$d=2\;(1-\stackrel{-}{\rho})\;.$$

- a. If you obtained the Durbin-Watson statistic, d = 2.7135, with n = 34, k' = 2, $d_L = 1.333$ and $d_U = 1.580$. Perform the Durbin-Watson test.
 - b. Explain WHY the Durbin-Watson d statistic is a number near 2.0 when null hypothesis is not rejected. Why does $0 \le d \le 4.0$?

Question 9 (15 points)

Given a sample of 32 yearly observations (y_t, x_{t2}) , the following matrices were calculated:

$$(\mathbf{X'} \ \mathbf{X})^{-1} = \begin{bmatrix} 1.606345267 & -0.01688205 \\ -0.01688205 & 0.00018094 \end{bmatrix} \qquad \mathbf{X'} \ \mathbf{y} = \begin{bmatrix} 2995.62 \\ 283964.668 \end{bmatrix}$$

Note: the following values were calculated using the correct c₁ and c₂ estimates.

the following values were calculated using the correct
$$c_1$$
 and c_2 estimates.

$$\sum_t (y_t - c_1 - c_2 x_{t2})^2 = 204.804524 \text{ and } s^2(Y) = 65.1762$$

$$\sum_s [(y_s - c_1 - c_2 x_{s2})(y_{s-1} - c_1 - c_2 x_{s-12})] = 182.265061$$

$$\sum_s [(y_s - c_1 - c_2 x_{s2}) - (y_{s-1} - c_1 - c_2 x_{s-12})]^2 = 28.299548$$

$$\sum_s [(y_s - c_1 - c_2 x_{s2}) - (y_{s-1} - c_1 - c_2 x_{s-12})] = -0.900113$$

$$\sum_{t} (c_1 + c_2 x_t - y)^2 = 1522.516$$
, where $t = 1, 2, ..., T$ and $s = 2, 3, ..., T$.

- Calculate the values in the (2×1) vector c.
- Calculate the Durbin-Watson d statistic and test the Ho: There is no positive or negative autocorrelation present.

$$[n = 32, k' = 1: d_U = 1.489 \text{ and } d_L = 1.352]$$

c. Calculate R2

Question 10 (10 points)

Sample estimates, c, of the (k x 1) vector of population parameters can be made subject to q linear constraints imposed by:

$$Rc = r$$

Where **R** is a matrix $(q \times k)$, $q \le k$ and **r** is a $(q \times 1)$ vector

11.

BLP =
$$c_1 + c_2 x_2 + c_3 x_3 + c_4 x_4 + c_5 x_5$$

Write down the matrix R and the vector r that would impose the following constraints:

- a. $c_2 = c_3$ and $c_4 = c_5$
- b. $c_2 7 c_3 = 6 c_4$

and the BLP.

Question 11 (10 points)

Stochastic independence and Mean independence both imply that C(X, Y) = 0.

- a. Explain the difference between stochastic and mean independence.
- b. If X and Y are stochastically independent, explain the implication for the CEF

Question 12 (10 points)

At the faculty of Economics and Management, 75% of the baccalaureate students in the English language program take the course Economics I, 65% of them take the course Economics II, and 85% of them take at least one of the two courses.

- a. What proportion of students takes both courses?
- b. What is the probability that a student will take Economics II given that he or she has taken Economics I?
- c. Are the decisions made by students to take these two courses independent?

This is the end of the examination.

GOOD LUCK !!

(Viel Glück! Alles Gute!)