Exam - 14.02.2009

Relax and take a deep breath • You are allowed 1 hour for your work • For full grade, you must solve all questions • All questions are of equal value. Their various parts, though, are not of equal weight • In your answers, you must justify your claims • The use of a calculator is permitted.

Part I

(30 Points)

(1) Find the minimax equilibrium of the following game:

$1 \setminus 2$	A	B	C
A	1, -1	2, -2	-2, 2
B	-2, 2	-1, 1	0,0
C	2, -2	0,0	-1, 1

- (2) Is this game fair? Give a precise definition of a fair game!
- (3) Which side-payment is necessary in order to turn this game into a fair one?
- (4) Manipulate the payoffs, so that $\tilde{q} = (0, \frac{1}{3}, \frac{2}{3})$ in equilibrium!
- (5) Proof that $m_i = M_j$ in any two-player zero-sum game $(i, j = 1, 2 \text{ and } i \neq j)$.

Part II

(30 Points)

(1) Consider the following simultaneous-move game:

I/II	W	X	Y	Z
A	4,5	8,7	5,8	2,9
B	7,6	6,3	2,4	4,8
C	5, 2	9,4	6,5	3,1
D	9, 2	10,1	2,2	5,4

- (a) Show that the strategies A, B, W and X are (iteratively) strictly dominated, by finding, in each case, a strictly dominating strategy.
- (b) Find all pure-strategy Nash equilibria of the game!
- (c) Graph the four different payoffs for each player in the payoff-space! Graph also the inducement correspondence for both players in the same figure!
- (c) Find the mixed-strategy Nash equilibrium of the game!
- (2) Is it possible that a mixed strategy is strictly dominated by a pure strategy even though it assigns positive probability only to pure strategies that are not strictly dominated? If yes, give an example! If not, proof!

- See overteut -

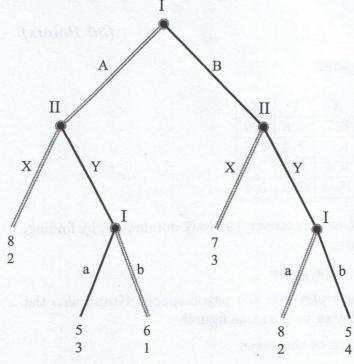
(3) Is it possible that rationalizable strategy fails to be a best response, given only pure strategies of the opponents? If yes, give an example. If not, proof!

Part III (30 Points)

- (1) In a Bertrand duopoly, two firms, i, j = 1, 2, compete by choosing simultaneously and independently the prices $p_i, p_j \geq 0$ at which they will sell their output. Each firm's cost function is $C(q_i) = 5 q_i$, that is, each firm has a constant marginal cost $c_i = 5$. Finally, the market demand is such that the firm that offers the lower price, $p = \min\{p_i, p_j\}$ captures the entire demand, q = 100 p; whereas if the prices are equal, the two firms split the market.
 - (a) What is firm i's profit as a function of p_i and p_j ? If firm i were a monopolist, what would be its optimal price choice, p_M ?
 - (b) What are the firms' best response functions? Graph them in the same axes.
 - (c) Find the Nash equilibrium of the game. What is the market price in equilibrium? What are the firms' profits?
- (2) Give an example for a game of strategic complements and plain substitutes. Graph the best response functions and the iso-payoff-curves for two players for this case. Do the same (example <u>and</u> graph) for a game of strategic substitutes and plain complements!

Part IV (30 Points)

(1) Show that this game has six Nash-equilibria but only one subgame-perfect equilibrium:



- (2) Create a game-tree example for a non-credible threat!
- (3) Create a game-tree example for a non-credible promise!