#### 20024: Microeconomic Analysis

Dr. Magnus Hoffmann / Prof. Dr. Marco Runkel Magdeburg University

# Exam - 08.02.2011

Relax and take a deep breath • You are allowed 2 hours for your work • For full grade, you must solve all questions • All questions are of equal value. Their various parts, though, are not of equal weight • In your answers, you must justify your claims • The use of a calculator is permitted.

Part I (30 Points)

- (1) Which axioms guarantee that preferences over simple lotteries can be represented by a von-Neumann-Morgenstern utility function? Give a short formal definition of the axioms!
- (2) Consider the following zero-sum game:

- (a) Find the mixed-strategy minimax equilibrium of the game!
- (b) Is this game symmetric? Give a precise definition of a symmetric game!
- (c) Is this game fair? Give a precise definition of a fair game!
- (d) Which side-payment is necessary in order to turn this game into a fair one?

Part II (30 Points)

(1) Consider the following simultaneous-move game:

|   | $1 \setminus 2$ | W   | X     | Y    | Z    |
|---|-----------------|-----|-------|------|------|
|   | $\overline{A}$  | 0,6 | 2, 5  | 0, 2 | 6, 0 |
| _ | B               | 0,1 | 0, -2 | 1,0  | 0, 1 |
|   | C               | 5,3 | 3,3   | 0, 2 | 5,3  |
|   | D               | 6,0 | 2,5   | 0, 2 | 8,6  |

- (a) Give a precise definition of a strictly dominated strategy!
- (b) Which of the above strategies are (iteratively) strictly dominated? Find, in each case, a strictly dominating strategy!
- (c) Give a precise definition a rationalizable strategy!
- (d) Which of the strategies of the game above are rationalizable? Why?
- (e) Find all pure-strategy Nash equilibria of the game!
- (2) Is it possible that a mixed strategy is strictly dominated by a pure strategy even though it assigns positive probability only to pure strategies that are not strictly dominated? If yes, give an example! If not, proof!

walls ...

### 20024: Microeconomic Analysis

Dr. Magnus Hoffmann / Prof. Dr. Marco Runkel Magdeburg University

(3) Is it possible that a rationalizable strategy fails to be a best response, given only pure strategies of the opponents? If yes, give an example. If not, proof!

## Part III

(30 Points)

The payoffs of two players are given by

$$\Pi_1(x_1, x_2) = (5 - 3x_1 + 2x_2)x_1$$
 and  $\Pi_2(x_1, x_2) = (10 - 3x_2 + 2x_1)x_2$ ,

with  $x_i \in [0, 10]$  for i = 1, 2.

- (1) Proof <u>before</u> solving the game that a (simultaneous-move) Nash equilibrium exists and that this Nash equilibrium is unique.
- (2) Do players have a first-mover or a second-mover advantage? Do players have a second-mover incentive? Again, give a short formal definition of these concepts!
- (3) Find the (simultaneous-move) Nash-equilibrium of the game!
- (4) Find the Stackelberg-equilibrium in which player 1 leads!
- (5) Does the equilibrium in (4) Pareto-dominate the one in (3)? (Hint: You don't need to calculate the payoffs for this.)

### Part IV

(30 Points)

Consider the two-player extensive game given below.

- (1) Specify all terminal nodes!
- (2) Specify all non-terminal nodes!
- (3) How many strategies does player I (II) have?
- (4) How many subgames does this game have?
- (5) Which strategies are payoff-equivalent?
- (6) Specify all Nash-equilibria in pure strategies!
- (7) What is the subgame-perfect equilibrium of the game?
- (8) Identify a non-credible threat preventing a Nash equilibrium from being subgame perfect!

