Klausur/Exam - Microeconomic Analysis (20024) - SS 2012

- Prüfer/Examiner: Manfred Jäger-Ambrożewicz, 02 Exam on Microeconomic Analysis, 2012-07-16
- No aids are allowed but a pocket calculator according to the rules of the examination office and a bilingual dictionary.
- The exam has 8 questions on 2 pages. 7 questions have to be answered. You have to choose whether you answer question 7 or 8. If you answer both, only the answer to question 7 will be taken into account. Please clearly state which question (7 or 8) you are answering. Your time budget is 120 minutes.
- When answering the questions you must provide explanations, intermediate steps and explicit verifications!

Question 1 (12 min / 10 points): Consider the following game with two players called Row and Column. Row has three strategies: T,M,B and Column also has three strategies: L,C,R. The table 1 displays the payoffs.

- a.) What strategies survive iterated elimination of strictly dominated stategies? At each step of elimination you have to provide the justification for elimination!
- b.) What are the pure-strategy Nash equilibria (NE)? It is necessary to provide a complete reasoning why a profile is or is not a NE!

Table 1

	L	C	R
\overline{T}	1,2	2,1	1,0
M	2,1	0,1	0,0
В	0,1	0,1	0,2

Question 2 (12 min / 10 points): Consider the following game with two players called Row and Column. Row has three strategies: T,M,B and Column also has three strategies: L,R. The table 2 displays the payoffs. Use iterated elimination of strictly dominated stategies to determine the unique outcome of the game. It is necessary to provide all intermediate steps.

Table 2

	\mathbf{L}	R
Т	10,4	0,1
M	4,2	4,3
D	0,5	10,2

Question 3 (15 min / 12.5 points): Consider the game tree in figure 1. There is something "wrong" with respect to the information structure. Explain what is "wrong".

Figure 1

Question 4 (12 min / 10 points): Consider the two games with payoffs as displayed in figure 2. Explain a.) what these two games have in common and b.) why one may expect different outcomes.

Figure 2

. 1	:	
0,0	9,9 0,8	
1.1	8,0 7,7	
	0,0	

Question 5 (18 min / 15 points):

- a.) Verify that the game displayed in figure 3 has three Nash equilibria.
- b.) Verify that there is only one **subgame perfect** Nash-equilibrium.
- c.) Why are the two Nash equilibria found in a.) less plausible than the Nash equilibrium of b.)

Figure 3

Question 6 (21 min / 17.5 points): According to Coase a monopolist who supplies a durable good faces a specific strategic delimma. Explain this dilemma! Refer to the two periods model with profits (don't derive these formulae but use them as a basis for your argument)

$$\begin{array}{rcl} \pi_2 & = & (1-x_1-x_2)x_2, \\ \pi_1 & = & (1-x_1+\delta(1-x_1-x_2))x_1+\delta(1-x_1-x_2)x_2 \\ & = & x_1-x_1^2+\delta x_1-\delta x_1^2-\delta x_1x_2+\delta x_2-\delta x_1x_2-\delta x_2^2, \end{array}$$

where x_1 and x_2 refer to the supplies in period 1 resp. period 2.

Hint: Focus on First Order Conditions and ignore the Second Order Conditions. Remember, that in one case the Kuhn-Tucker-Condition implies a **boundary solution**. It is not necessary to verify this mathematically but you must provide an explanation of the importance of this aspect of the solution. In order to **explain the dilemma** it is not necessary to solve all relevant optimization problems but to explain the problem with **one** optimization problem.

Question 7 (30 min / 25 points): Consider figure 4.

- a.) Explain referring to the game of figure 4 what a belief μ is!
- b.) In a weak perfect Bayesian equilibrium beliefs are calculated in a certain way. Explain how?
- c.) Verify that there is no system of beliefs such that (out, fight if in) is sequentially rational.
- d.) Verify that (in1, accommodate if in) is a weak perfect Bayesian equilibrium.

Figure 4

Question 8 (30 min / 25 points): Consider a monopolist with constant marginal cost of c > 0 who faces the following demand

$$X(p) = p^{-\epsilon}$$
.

- a.) Calculate Cournot monopoly price p as a function of c and ϵ .
- b.) Verify that $p = (1 + \phi)c$ for some ϕ . Calculate ϕ in terms of ϵ .
- c.) Suppose $\epsilon = 2$ and c = 1. Calculate the welfare loss relative to perfect competition (where p = c).