M. Sc. PROGRAM IN INTERNATIONAL ECONOMICS AND FINANCE
OTTO-VON-GUERICKE UNIVERSITY, MAGDEBURG
PROF. DR. KARL-HEINZ PAQUE

ADVANCED ECONOMETRICS: A GUIDED TOUR
% 8 ECONOMETRICS)

FinaL Exam
WINTER TERM 2011/12 - FEBRUARY 15, 2012

Antonio Fidalgo, Ph.D. candidate
Faculty of Business and Economics
University of Lausanne
Lausanne, Switzerland

Instructions

No textbook, lecture note or any other piece of documentation is permit-
ted. A dictionary for language issues is allowed.

This exam contains 7 problems. You must solve all of them.

Each problem is worth 12.5 points, except for Problem 3 that has 25
points. Hence, you can get a maximum of 100 points.

For your answers, use exclusively the working sheets provided. Noth-
ing you would write on these problems’ sheets will be considered in the
grading.

The duration of the exam is 120 minutes. Allocate your time wisely.

Good luck!
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Problem 1. “Dewey defeats Truman”

Figure 1: Illustrative view of the results obtained by the polls in Problem 1.
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© Various pollsters’ estimates over time

In 1948, Harry S. Truman was elected President of the United States of America.
This came as a huge surprise to most, if not all, of the political commentators’.
Indeed, the major pollsters such as Gallup, Crossley and Roper had no doubt
when predicting an easy victory of Gov. T. Dewey at the U. S. presidency.
Figure 1 is simply an illustrative view?. It depicts the results of the polls ob-
tained via phone from several large samples of randomly selected American
citizens who faithfully reported their opinion.

Consider this problem from an econometric point of view. Given the data in
Figure 1, you can get the ordinary least squares (OLS) estimate of the percent-
age of voices in favour of Dewey (as predicted by the polls) by estimating the
model

Y =+ & (1)

i.e. by regressing the results of the polls (y;’s) on a constant?.

Required. Explain with sufficient detail and clarity why estimating the re-
gression model (1) in this case will produced a biased/ inconsistent estimate of
the true a. Notice that the lack of an answer to that question explains why all
the commentators were fooled by the polls.

1The Chicago Daily Tribune, for instance, didn’t wait for the official results. A famous
picture shows President Truman holding that newspaper on the day after the election with
the quote above in his front page.

2The actual numbers don’t really matter for our purpose here. It turns out I generated the
data in Figure 1 with the command: gen y=53+rnormal().
Tt is important to emphasize, however, that the expected percentage of voices for Gov. T.
Dewey as predicted by the pollsters was way above 50.

30bviously, taking the mean of the observations would produce the same estimate.
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Problem 2. Where Stata has it wrong

The Stata command kdensity offers to produce a nonparametric, kernel-based
estimate of a univariate density. Figures 2 and 2 (cont’d) reproduce the help-file

for that command.

Required. Based on that document, explain with sufficient detail and clarity
why this software provides unreliable estimates of a univariate density.

Figure 2: Stata help-file for kdensity, pp.1-2

STara|

Stata 12 help for kdensity

Iitle
[R] kdensity -- Univariate kernel density estimation
Syntax
kdensity varname [if] [in] [weight] [, options]
options Description
Main
kernel(kernel) specify kernel function; default is
kernel (epanechnikov)
bwidth(#) half-width of kernel

generate(newvar_x newvar d) store the estimation points in newvar x
and the density estimate in newvar_d

n(#) estimate density using # points; default
is min(N, 50)

at(var_x) estimate density using the values
specified by var x
nograph suppress graph

Kernel plot
cline options affect rendition of the plotted kernel

density estimate

Density plots

nermal add normal density to the graph
normopts(cline options) affect rendition of normal density
student (#) add Student’s t density with # degrees of

freedom to the graph
affect rendition of the Student's t
density

stopts(cline options)

Add plots

addplot (plot) add other plots to the generated graph

¥ axis, X axis, Titles, Legend, Overall
twoway_options any options other than by() documented in
[G-3] twoway options

kernel Description

epanechnikov Epanechnikov kernel function; the default
epan2 alternative Epanechnikov kernel function
biweight biweight kernel function

cosine cosine trace kernel function

gaussian Gaussian kernel function
parzen Parzen kernel function

rectangle rectangle kernel function
triangle triangle kernel function

fweights, aweights, and iweights are allowed; see weight.

Menu

Statistics > Nonparametric analysis > Kernel density estimation

it

kdensity produces kernel density estimates and graphs the result.

Options

====+ Main +

kernel(kernel) specifies the kernel function for use in calculating the
kernel density estimate. The default kernel is the Epanechnikov
kernel (epanechnikov).

bwidth(#) specifies the half-width of the kernel, the width of the
density window around each point. If bwidth() is not specified, the
"optimal" width is calculated and used; see [R] kdensity. The
optimal width is the width that would minimize the mean integrated
squared error if the data were Gaussian and a Gaussian kernel were
used, so it is not optimal in any global sense. In fact, for
multimodal and highly skewed densities, this width is usually too
wide and oversmooths the density (Silverman 1992).

generate(newvar_x newvar_d) stores the results of the estimation.
newvar_x will contain the points at which the density is estimated.
newvar d will contain the density estimate.

n(#) specifies the number of points at which the density estimate is to
be evaluated. The default is min(N,50), where W is the number of
observations in memory.

at(var_x) specifies a variable that contains the values at which the
density should be estimated. This option allows you to more easily
obtain density estimates for different variables or different
subsamples of a variable and then overlay the estimated densities for
comparison.

nograph suppresses the graph. This option is often used with the

; MVERSITAT -
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Figure 2 (cont’d): Stata help-file for kdensity, pp.3-4

generate() option. function, store these results in x2, and suppress the graph
. kdensity weight, kernel(parzen) gen(x2 parzen) nograph

—--—+ Kernel plot +

Saved results

cline options affect the rendition of the plotted kernel density
estimate. See [G-3) cline options.

kdensity saves the following in r():

+ -t
----+ Density plots + Scalars
r(bwidth) kernel bandwidth
r(n) number of points at which the estimate was evaluated
normal requests that a normal density be overlaid on the density estimate r(scale) density bin width
for comparison.
Macros
normopts (cline options) specifies details about the rendition of the r(kernel) name of kernel
normal curve, such as the color and style of line used. See [G-3]
cline options.
student (#) specifies that a Student's t density with # degrees of freedom Reference

be overlaid on the density estimate for comparison.

Silverman, B. W. 1992. Density Estimation for Statistics and Data
stopts(cline options) affects the rendition of the Student's t density. Analysis. London: Chapman & Hall.
See [G-3] cline_options.

—-—-+ Add plots +

. ® Copyright 1936-2011 StataCorp LP | Terms of use | Privacy | Contactus | What'snew | Site index

addplot(plot) provides a way to add other plots to the generated graph.
See [G-3] addplot_option.

+ +
+ Y axis, X axis, Titles, Legend, Overall +

twoway_options are any of the options documented in [G-3] twoway options,
excluding by(). These include options for titling the graph (see
[6-3] title options) and for saving the graph to disk (see [G-3]
saving_option)-

Examples

Setup
. sysuse auto

Graph kernel density estimates for length
. kdensity length

Same as above, but use 20 for the half-width of the kernel
. kdensity length, bw(20)

Obtain kernel density estimates for weight using the Parzen kernel

3 I s
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Problem 3. Do da do-file

Read the following do-file. You should understand it produces a graph with
four sampling distributions (for beta, gamma, delta and theta).

Required. Draw the resulting graph (“graph samp_dist”). Be as precise as
possible and provide relevant explanations about the way you construct it.

/* do-file with four
sampling distributions */

clear all

#delimit ;

set mem 1G ;

capture log close ;

set more off ;

log using mylogfile.log,
replace ;

set obs 1000;
set seed 9809;
local samplesize=100;
local nsamples=1000;

gen beta=.;
gen gamma=.;
gen delta=.;
gen theta=.;
gen z=10*rnormal();

foreach kk of numlist 1(1)
‘nsamples’{ ;

gen shock ‘kk’=20*rnormal();
gen y‘kk’=80+b*z+shock ‘kk’ in
1/‘samplesize’;

reg y‘kk’ z in 1/‘samplesize’;
matrix A‘kk’=e(b);

matrix A‘kk’=A‘kk’[1,1];
svmat A‘kk’, names(A‘kk’) ;
egen B‘kk’=max(A‘kk’);
replace beta=B‘kk’ in ‘kk’;
drop A* B* ;

gen x‘kk’=z- shock‘kk’/5 in
1/‘samplesize’ ;

replace y‘kk’=80 + bxx‘kk’ +
shock‘kk’ in 1/‘samplesize’;
reg y‘kk’ x‘kk’ in 1/
‘samplesize’ ;

matrix A‘kk’=e(b);

matrix A‘kk’=A‘kk’[1,1];
svmat A‘kk’, names(A‘kk’) ;
egen Bkk’=max(A‘kk’);
replace gamma=B‘kk’ in ‘kk’;
drop A* B* ;

replace shock‘kk’=20*rnormal ()
in 1/‘samplesize’ ;

replace shock‘kk’=40*rnormal ()
in 50/ ‘samplesize’ ;

replace y‘kk’=80 + b*z + shock‘kk’
in 1/‘samplesize’;

reg y‘kk’ z in 1/ ‘samplesize’;
matrix A‘kk’=e(b);

matrix A‘kk’=A‘kk’[1,1];

svmat A‘kk’, names(A‘kk’) ;
egen Bkk’=max(A‘kk’);

replace delta=B‘kk’ in ‘kk’;
drop A* B* ;

reg y‘kk’ z in 1/‘samplesize’,
robust;

matrix A‘kk’=e(b);

matrix A‘kk’=A‘kk’[1,1];

svmat A‘kk’, names(A‘kk’) ;
egen Bfkk’=max(A‘kk’);

replace theta=B‘kk’ in ‘kk’;
drop A* B* ;

s

twoway (kdensity beta, lcolor(blue)
legend(on order(l "beta" 2

"gamma" 3 "delta" 4 "theta"))
(kdensity gamma, lcolor(red))
(kdensity delta, lcolor(yellow))
(kdensity theta, lcolor(green)),
ytitle(Densities) xtitle(Values);
graph2tex, epsfile(graph_samp_dist);

log close;
/* end of current do-file */
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Problem 4. Master of Divinity degree effect on income

In their paper?, sociologists Chang and Perl “explore how Protestant denomi-
nations use education to stratify their pastors among lower and higher income
jobs and how this use of education intersects with gender”. Table 1 reproduces
Table 3 of that paper. It gives the estimates for key variables explaining income,
namely gender and education.

Table 1: OLS regression of logged annual income on gender and education,
denominations not requiring a Master of Divinity degree

Indep. Variable 3 Coeft. Std. Error
Gender and Education .
Female (0,1) L0.523%% (0.090)
Highest College/ Seminary Degree (0 — 5) 0.054** (0.016)
Female X Highest Degree 0.099%** (0.024)
Control Variables
Racial Minority 0.071 (0.089)
Age at Ordination -0.009%** (0.002)
Prior Religious Work Experience 0.0008%** (0.0002)
Religious Career has been Interrupted -0.118%* (0.044)
Constant 3.434

R? =0.292, N = 642
#p < .05; %% p < .01; %% xp < .001

The gender variable takes the value 1 if the individual is a female whereas
education is “a measure with the following six levels: less than a college degree
(coded zero); a college degree; some seminary but no degree; a lower-track
seminary degree; the Master of Divinity degree; and any seminary degree higher
than the M.Div. (coded five).”

Required. As far as the effect of education® on income is concerned, clearly
state which constraints this regression model imposes on the data generating
process. Argue that those constraints are likely to be too restrictive.

Call Z the set of control variables. Write down the same regression model but
with a less restrictive, hence potentially more correct way of dealing with the
education variable.

“Perl, P. and P. Chang (2000), “Credentialism Across Creeds: Clergy Education and Strati-
fication in Protestant Denominations”, Journal for the Scientific Study of Religion, Vol. 39(2).

5Leave aside the interaction term.
% S—— YL
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Problem 5. Maximum likelihood estimate of a Poisson
distribution

Following Ladislaus Bortkiewicz, you think that the number of soldiers of the
Prussian army killed accidentally by horse kick follows a Poisson distribution
of some parameter A.

In that case, remember that the probability of observing exactly k times such
a rare event in a given period of time is given by

Akg—2

FRN = =

(2)

(!7

where e is the base of the natural logarithm and the ‘! sign stands for the

factorial operator of k.
Suppose you have a sample of n independent values of k, ¢.e. you observe the
k; of n units of the Prussian army.

Required. Write L()\) = f (K1, ..., kn|)), the log-likelihood function for that
sample. Derive AMLE  the maximum likelihood estimate of A to show

n
sze _ L~ p (3)
i i=1

Problem 6. Criteria for estimators and tests

Required. For the following questions, provide a short yet sufficient, appro-
priate answer.

a. When choosing among estimators, what would you consider to buy against
some bias of your estimates? Explain.

b. If two tests are asymptotically equivalent, which criteria will you consider
in order to make a choice among them? Give and explain two of them.

()i )
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Problem 7. Your classic authors in Econometrica

Required. The following quote was copied from the 1978 paper “Specifica-
tion Tests in Econometrics”, Econometrica, 46(6), pp. 1251-1271. Guess who
the author is®. With or without that information remind thanks to an example
in which context this paper has proved pivotal.

“The theory underlying the proposed specification tests rests on one fundamen-
tal idea. Under the (null) hypothesis of no misspecification, there will exist a
consistent, asymptotically normal and asymptotically efficient estimator, where
efficiency means attaining the asymptotic Cramer-Rao bound. Under the al-
ternative hypothesis of misspecification, however, this estimator will be biased
and inconsistent. To construct a test of misspecification, it is necessary to find
another estimator which is not adversely affected by the misspecification; but
this estimator will not be asymptotically efficient under the null hypothesis. A
consideration of the difference between the two estimates, § = 13’1 - ;@0 where
o is the efficient estimate under Hy and 31 is a consistent estimator under
Hi, will then lead to a specification test. If no misspecification is present, the
probability limit of § is zero. With misspecification plim ¢ will differ from zero;
and if the power of the test is high, § will be large in absolute value relative to
its asymptotic standard error. Hopefully, this procedure will lead to powerful
tests in important cases because the misspecification is apt to be serious only
when the two estimates differ substantially.

In constructing tests based on §, an immediate problem comes to mind. To
develop tests not only is the probability limit of ¢ required, but the variance of
the asymptotic distribution of VT4§, V(§), must also be determined. Since [;0
and 3 use the same data, they will be correlated which could lead to a messy
calculation for the variance of v/T'§. Luckily, this problem is resolved easily
and, in fact, V(§) = V(B1) — V(,@o) = V1 — V5 under the null hypothesis of no
misspecification. Thus, the construction of specification error tests is simpli-
fied, since the estimators may be considered separately because the variance of
the difference vT§ = ﬁ(ﬁl - 5’0) is the difference of the respective variances.
The intuitive reasoning behind this result is simple although it appears to have
remained generally unnoticed in constructing tests in econometrics. The idea
rests on the fact that the efficient estimator, f}o, must have zero asymptotic
covariance with § under the null hypothesis for any other consistent, asymptot-
ically normal estimator 5’1. If this were not the case, a linear combination of
,@0 and § could be taken which would lead to a consistent estimator )é* which
would have smaller asymptotic variance than Bg which is assumed asymptoti-
cally efficient. To prove the result formally, consider the following lemma:

LEMMA 2.1: Consider two estimators Bo; BI which are both consistent and
asymptotically normally distributed with Bo attaining the asymptotic Cramer-
Rao bound so vT(Bo— ) o N(0,V5) and VT (31— ) 2 N(0, V1) where Vy is the
inverse of Fisher’s information matriz. Consider § = ,5’1 — Bo. Then the limiting
distributions of \/T(Bg —f) and VT have zero covariance, C'(,@’o, q) =0, a zero
matriz.

SNotice that you don’t need to read it all to make that guess: Lemma 2.1 should be enough.
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